Abstract

Seismic fault detection is a key step in seismic interpretation and reservoir characterization that often requires a large amount of human labor and interpretation time. Therefore, automatic seismic fault detection is critical for improving the efficiency of seismic data processing and interpretation. Existing artificial intelligence methods are mostly based on convolutional neural networks with a U-shaped encoder-decoder structure, known as U-net. However, the convolution is limited in modeling long-range correlative features. Instead, transformers, using self-attention mechanisms, avoid the local nature of the convolution, which has the potential to extract long-distance correlations. Transformers are proven to perform well in natural language processing, image classification, and segmentation tasks in precision and recall. Here, we develop a new deep neural network with transformers and a U-net-like structure: a fault transformer to perform the fault detection task. The new network outperforms the traditional U-net in the application with synthetic data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.