Abstract
This paper addresses the position and attitude tracking control problem for a recently designed ellipsoidal airship with four vectored thrusters. External disturbances, thruster faults, mass matrix and aerodynamic coefficient uncertainties, which are inevitably encountered in practice, can deteriorate the control system performance of airship and even lead to system instability. To meet these challenges, we develop an adaptive integral sliding mode control method without requiring the prior knowledge of mass matrix and aerodynamic coefficients, in which these uncertainties and faults are considered simultaneously. We showed that the three Cartesian positions and three Euler attitude angles could globally asymptotically track the desired values in the face of external disturbances, thruster faults, mass matrix and aerodynamic coefficient uncertainties. Simulation results validate the effectiveness and advantage of proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.