Abstract

Due to the critical nature of the tasks in hard real-time systems, it is essential that faults be tolerated. In this paper, we present a scheme which can be used to tolerate faults during the execution of preemptive real-time tasks. We describe a recovery scheme which can be used to re-execute tasks in the event of single and multiple transient faults and discuss conditions that must be met by any such recovery scheme. We then extend the original Rate Monotonic Scheduling (RMS) scheme and the exact characterization of RMS to provide tolerance for single and multiple transient faults. We derive schedulability bounds for sets of real-time tasks given the desired level of fault tolerance for each task or subset of tasks. Finally, we analyze and compare those bounds with existing bounds for non-fault-tolerant and other variations of RMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call