Abstract
This work presents a novel method of fault-tolerant model predictive control where the response of a reference closed-loop model is followed even in the presence of an actuator fault. This architecture is capable of redistributing the control efforts among healthy actuators in a stable manner, respecting their limitations. Also, a constrained guidance system that works in conjunction with the inner-loop fault-tolerant controller is proposed. The guidance law considers the calculated limitations of the inner-loop control system as input constraints in order to smooth the transition between two consecutive navigation legs defined by waypoints. A trajectory-tracking system composed of the constrained guidance and the fault-tolerant model predictive controller is demonstrated through numerical simulations and experimental results on an experimental midsize transport aircraft, showing adequate performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.