Abstract

This paper investigates fault-tolerant consensus of single-integrator multi-agent systems (MASs) with partial agents subject to synchronous self-sensing function failure (SSFF). First, a strategy of recovering the connectivity of network topology among normal agents is proposed via multi-hop communication together with agents subject to SSFF as routing nodes. Second, a fault-tolerant consensus protocol with time-varying gains is designed. Then, consensus convergence is analyzed by separately investigating the dynamics of normal agents and agents subject to SSFF. It is proved that under proper time-varying gains, single-integrator MASs using the proposed strategy of recovering the connectivity of network topology and fault-tolerant consensus protocol can achieve consensus. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.