Abstract
One approach for providing fault tolerance is through examining the behavior and properties of the application and deriving executable assertions that detect faults. This paper focuses on transforming the assertions of a verification proof of a program to executable assertions. These executable assertions may be embedded in the program to create a fault-tolerant program. It is also shown how the natural redundancy of the program variables can be used to reduce the number of executable assertions needed. While this approach has been applied to the sequential programming environment, the distributed programming environment presents special challenges. The authors discuss the application of concurrent programming axiomatic proof systems to generate executable assertions in a distributed environment using distributed branch and bound as a model problem. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.