Abstract
Geometry and roughness of fault surfaces plays a central role in the dynamics and kinematics of faulting. Faults smooth with increasing slip, but the degree of the smoothing has not previously been well-constrained for natural faults. We measure the roughness as a function of displacement for a suite of 16 faults with cumulative offsets ranging from 0.1m to approximately 500m. We find that slip parallel roughness evolves gradually with slip. For instance, for segments of length 0.5m, H≈2×10−3D−0.1 where H is the RMS roughness and D is the displacement on the fault strand with both quantities measured in meters. The gradual nature of the smoothing is robust to varying lithology and erosion. The weak function implies a decrease in the rate of gouge formation for a model with increasing slip for a model in which gouge is generated by abrading an asperity tip. The relatively gradual evolution of roughness could be explained by lubrication by the accumulated gouge that mitigates the abrasional smoothing that occurs during slip and/or re-roughening processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.