Abstract

Previously unknown strike-slip and normal faults in the central and eastern Mojave Desert have been revealed on Landsat Thematic Mapper images enhanced by four-component processing. This method provides color images on which lithologies are discriminated by their contrasting absorption and reflection, primarily at infrared wavelengths and particularly with regard to their ferric iron, ferrous iron, and hydroxyl contents, while retaining landform depiction. These discriminants represent a new type of geophysical display for geologic mapping in regions of well-exposed bedrock. Faults are revealed on the images by abrupt spectral and textural contrasts that coincide with aligned topographic features. The newly discovered faults form part of an extensive regional network of right shear that connects faults in the Death Valley region with the San Andreas fault system. They support a heterogeneous strain model for late Cenozoic tectonic evolution of the region. Regional structural relations indicate a westward migration of the locus of strain through time. Some of the newly identified faults bound blocks that have experienced contrasting rotational histories since early Miocene time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call