Abstract

We analyze pervasive and discontinuous deformation associated with small faults in a quartz–syenite body in southern Israel. The analysis includes detailed mapping, measurement of in-situ mechanical rock properties and microstructural study of the faults. The mapped faults have 1–100-m-long horizontal traces, consisting of linked, curved segments; the segmented nature of the faults is also apparent at the 1–10 mm scale. The observed deformation features are breccia, as well as intra- and inter-granular fractures; these features are accompanied by reduction of the Young modulus and uniaxial strength of the host rock. The deformation features are zoned from a central fault-core through a damage-zone to the protolith at distances of 0.05–0.06 the fault length. Shear strains up to 300% were calculated from measured marker lines displacements and distortion in proximity to the faults. We argue here that the fault-related deformation during fault propagation is manifested by highly localized deformation in a process zone having a width of 0.001–0.005 of the fault length (fault-related deformation due to subsequent slip along the existing faults is analyzed in Part II). The observed self-similarity of the discontinuities over five length orders of magnitude and the outstanding lack of tensile microcracks suggest fault initiation and growth as primary shear fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.