Abstract

The 2004 mid‐Niigata Prefecture earthquake occurred in a fold‐and‐thrust belt that has been growing since late Pliocene time in a Miocene rift basin along the eastern margin of the Japan Sea. We constructed the trajectory of the subsurface faults responsible for the growth of the folds from the geologic structure and stratigraphy in the source region, assuming that the folds have been growing as fault‐related folds because of inclined antithetic shear with a dip of 85° in the hanging wall above a single reverse fault. The fault trajectory constructed from the fold geometries nearly coincides with the geometries of the source fault of the main shock of the 2004 earthquake revealed by aftershocks, which supports that the rupture was along a geologic fault that has ruptured repeatedly during the last a few million years. A three‐dimensional fault model based on 12 fault trajectories constructed along parallel sections revealed that the main shock occurred on a convex bend in the fault surface and that the southern termination of the aftershock distribution nearly coincides with a concave bend in the fault. The close relation between the source fault and the geologic structure shows that it is possible to construct source fault geometry assuming inclined shear as deformation mechanism of a hanging wall and to infer the rupture areas from geologic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.