Abstract

AbstractSurface deformations on the western flank of Mt Etna volcano, spanning 1980–2004, have been analysed as they pertain to stress interactions between magma intrusions within the shallow crust along the S–SE Rift and faulting sensitivity. During this period, an accurate analysis of strain parameters, computed by inversion of SW electro‐optical distance data, suggested that the observed strong displacements on this flank of the edifice can also be related to dextral shear movements along a roughly NE–SW buried fault crossing the area covered by this network, as supported by seismic observations of the 20–24 April 2001 swarm. Moreover, Coulomb stress change model analysis confirms that the displacement along this fault, heralding the July–August 2001 eruption 2 months earlier can be related to major stresses applied by a dike intrusion at depth along the S–SE Rift, as testified by the microseismicity occurring between November 2000 and 19 April 2001.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call