Abstract

In the central part of the internal Western Alps, widespread multidirectional normal faulting resulted in an orogen-scale radial extension during the Neogene. We revisit the frontal Piemont units, between Doire and Ubaye, where contrasting lithologies allow analysing the interference with the N–S trending Oligocene compressive structures. A major extensional structure is the orogen-perpendicular Chenaillet graben, whose development was guided by an E–W trending transfer fault zone between the Chaberton backfold to the north and the Rochebrune backthrust to the south. The Chaberton hinge zone was passively crosscut by planar normal faults, resulting in a E–W trending step-type structure. Within the Rochebrune nappe, E–W trending listric normal faults bound tilted blocks that slipped northward along the basal backthrust surface reactivated as an extensional detachment. Gravity-driven gliding is suggested by the general northward tilting of the structure in relation with the collapse of the Chenaillet graben. The stress tensors computed from brittle deformation analysis confirm the predominance of orogen-parallel extension in the entire frontal Piemont zone. This can be compared with the nearby Brianconnnais nappe stack where the extensional reactivation of thrust surfaces locally resulted in prominent orogen-perpendicular extension. Such a contrasting situation illustrates how the main direction of the late-Alpine extension may be regionally governed by the nature and orientation of the pre-existing structures inherited from the main collision stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call