Abstract
In this article, we propose a data-driven method for short-circuit fault detection in transmission lines that exploits the capabilities of convolutional neural networks (CNNs). CNNs, a class of deep feedforward neural networks, can autonomously detect different features from data, eliminating the need for manual intervention. To mitigate the effects of noise and increase network robustness, we present a CNN architecture with six convolutional layers. The study uses a single busbar power system model developed with the PSCAD simulation program to evaluate the performance of the proposed method. The proposed CNN method is also compared with machine learning methods such as LSTM, SVM and ELM. Our results show a high success rate of 98.4% across all fault impedances, confirming the effectiveness of the proposed CNN methods in accurately detecting short-circuit faults based on current and voltage measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Polish Academy of Sciences Technical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.