Abstract

Abstract Fault trees are a popular industrial technique for reliability modelling and analysis. Their extension with common reliability patterns, such as spare management, functional dependencies, and sequencing—known as dynamic fault trees (DFTs)—has an adverse effect on scalability, prohibiting the analysis of complex, industrial cases. This paper presents a novel, fully automated reduction technique for DFTs. The key idea is to interpret DFTs as directed graphs and exploit graph rewriting to simplify them. We present a collection of rewrite rules, address their correctness, and give a simple heuristic to determine the order of rewriting. Experiments on a large set of benchmarks show substantial DFT simplifications, yielding state space reductions and timing gains of up to two orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.