Abstract

PurposeThe objective of this study is to enhance the usage of teleoperation fields, such as in nuclear site decommissioning or nuclear waste disposal, by designing a stable, dependable and fault‐tolerant teleoperation system in the face of “extraordinary” conditions. These “extraordinary” conditions can be classified as variable time delays in communications lines, usage of different robotic systems, component failures and changes in the system parameters during task execution.Design/methodology/approachThis paper first gives a review of teleoperation systems developed earlier. Later, fault tolerance is proposed for use in teleoperation systems at the processor, actuator, sub‐system, and system levels. Position/force control algorithms are recommended to address stability issues when there is a loss in communications. Various other controls are also introduced to overcome the instability experienced when there is a time delay in the communications line.FindingsFinally, this work summarizes the teleoperation system architecture and controller design options in terms of a flowchart to help in the conceptual design of such systems.Originality/valueThe impact of these new designs and algorithms will be to expand the limits and boundaries of teleoperation and a widening of its utilization area. Enhanced operation of these systems will improve system reliability and even encourage their use in more critical and diverse applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.