Abstract
This paper presented a routing algorithm that finds n disjoint shortest paths from the source node s to target node d in the n-dimensional hypercube. Fault-tolerant routing over all shortest node-disjoint paths has been investigated to overcome the failure encountered during routing in hypercube networks. In this paper, we proposed an efficient approach to provide fault-tolerant routing which has been investigated on hypercube networks. The proposed approach is based on all shortest node-disjoint paths concept in order to find a fault-free shortest path among several paths provided. The proposed algorithm is a simple uniform distributed algorithm that can tolerate a large number of process failures, while delivering all n messages over optimal-length disjoint paths. However, no distributed algorithm uses acknowledgement messages (acks) for fault tolerance. So, for dealing the faults, acknowledgement messages (acks) are included in the proposed algorithm for routing messages over node-disjoint paths in a hypercube network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Parallel, Emergent and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.