Abstract

While topological quantum computation is intrinsically fault-tolerant at zero temperature, it loses its topological protection at any finite temperature. We present a scheme to protect the information stored in a system supporting non-cyclic anyons against thermal and measurement errors. The correction procedure builds on the work of G\'acs [Gacs 1986] and Harrington [Harrington 2004] and operates as a local cellular automaton. In contrast to previously studied schemes, our scheme is valid for both abelian and non-abelian anyons and accounts for measurement errors. We analytically prove the existence of a fault-tolerant threshold for a certain class of non-Abelian anyon models, and numerically simulate the procedure for the specific example of Ising anyons. The result of our simulations are consistent with a threshold between $10^{-4}$ and $10^{-3}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.