Abstract

This study explores fault-tolerant consensus in leader–following heterogeneous multi-agent systems, focusing on actuator failures in uncrewed aerial vehicles (UAVs) and uncrewed ground vehicles (UGVs). An optimization-based fault-tolerant consensus algorithm is proposed. The algorithm utilizes the Euler–Lagrange formula to ensure system consistency under actuator failures, with the Lyapunov stability theory proving the asymptotic stability of the consistency error. The algorithm is applied to heterogeneous multi-agent systems of UAVs and UGVs to derive optimal fault-tolerant consensus control laws for each vehicle type. Simulation experiments give evidence for the feasibility of the proposed control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.