Abstract

PurposeThe purpose of this paper is to present a new nested rapidly‐exploring random tree (RRT) algorithm for fault tolerant motion planning of robotic manipulators.Design/methodology/approachAnother RRT algorithm is nested within the general RRT algorithm. This second nested level is used to check whether the new sampled node in the first nested level is fault tolerant. If a solution can be found in the second nested RRT, the reduced manipulator after failures at the new sampled node can still fulfill the remaining task and this new sampled node is added into the nodes of RRT in the first level. Thus, the nodes in the first level RRT algorithm are all fault tolerant postures. The final trajectory joined by these nodes is also obviously fault tolerant. Besides fault tolerance, this new nested RRT algorithm also can fulfill some secondary tasks such as improvement of dexterity and obstacle avoidance. Sufficient simulations and experiments of this new algorithm on fault tolerant motion planning of robotic manipulators are implemented.FindingsIt is found that the new nested RRT algorithm can fulfill fault tolerance and some other secondary tasks at the same time. Compared to other existing fault tolerant algorithms, this new algorithm is more efficient.Originality/valueThe paper presents a new nested RRT algorithm for fault tolerant motion planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call