Abstract

To tackle the trajectory-following problem of multiple unmanned aerial vehicles (UAVs) characterized by high non-linearity and strong coupling, this paper methodologically separates the dynamics of fixed-wing UAVs into two subsystems and designs appropriate controllers for each loop. Unlike previous works, the proposed multi-purpose method simultaneously accounts for constraints, computational time, external disturbances, and actuator faults. The inclusive structure of the proposed strategy is as follows: Firstly, in the outer loop, by employing the high precision and constraint-handling attributes of nonlinear model predictive control (NMPC), the trajectories of the agents are guided to their reference positions while considering spatial limitations, including no-fly zone evasion and inter-vehicle collision evasion. Then, the optimal states of the inner loop are designed. Secondly, in the inner loop, a fault-tolerant sliding mode predictive control (SMPC) is reconfigured to accommodate identified actuator faults and follow the optimal states produced by NMPC. The effectiveness of the suggested algorithm is verified through a series of simulation results. Comparison simulation results substantiate the ascendancy of the suggested dual-loop method over the NMPC trajectory replanning algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.