Abstract

This work focuses on fault-tolerant control of a gas phase polyethylene reactor. Initially, a family of candidate control configurations, characterized by different manipulated inputs, is identified. For each control configuration, a bounded nonlinear feedback controller, that enforces asymptotic closed-loop stability in the presence of constraints, is designed, and the constrained stability region associated with it is explicitly characterized using Lyapunov-based tools. Next, a fault-detection filter is designed to detect the occurrence of a fault in the control actuator by observing the deviation of the process states from the expected closed-loop behavior. A switching policy is then derived, on the basis of the stability regions, to orchestrate the activation/deactivation of the constituent control configurations in a way that guarantees closed-loop stability in the event of control system faults. Closed-loop system simulations demonstrate the effectiveness of the fault-tolerant control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.