Abstract
A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process will be dependent on the actual evolving states, making their incorporation in the design context a non-trivial task. A feasible direction method has been integrated in the design procedure based on active set technique to resolve the challenging constraint–based FLMPC problem. The formulated FLMPC design method is utilized to develop a FTC scheme by providing a set of backup control configurations for a CSTR benchmark process. The successful performance of the proposed FTC methodology has been demonstrated via a category of common fault scenarios by exercising an arbitrary replacement of control configurations through a supervisor to maintain the CSTR operation at an unstable desired steady-state point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iranian Journal of Chemistry & Chemical Engineering-international English Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.