Abstract

ABSTRACTThis paper proposes a fault-tolerant control scheme for linear systems with mismatched uncertainties which are assumed to be norm-bounded, affine and polytopic, respectively. The linear fractional transformation (LFT) and linear matrix inequality (LMI) techniques are introduced to handle the mismatched uncertainties, and the adaptive techniques are used to compensate actuator faults. By using the cone complementary linearisation algorithm, the resulting stability criteria are converted into solvable ones. Then, on the basis of Lyapunov stability theory, it is shown that the solutions to the closed-loop system and error system are uniformly bounded, especially, the states converge asymptotically to zero. Finally, simulations are given to illustrate the effectiveness and advantages of the proposed theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call