Abstract

Fault detection and diagnosis (FDD) methods and fault-tolerant control (FTC) have been the focus of intensive research across various fields to ensure safe operation, reduce costs, and optimize maintenance tasks. Unmanned aerial vehicles (UAVs), particularly quadcopters or quadrotors, are often prone to faults in sensors and actuators due to their complex dynamics and exposure to various external uncertainties. In this context, this work implements different FDD approaches based on the Kalman filter (KF) for fault estimation to achieve FTC of the quadcopter, considering different faults with nonlinear behaviors and the possibility of simultaneous occurrences in actuators and sensors. Three KF approaches are considered in the analysis: linear KF, extended KF (EKF), and unscented KF (UKF), along with three-stage and adaptive variations of the KF. FDD methods, especially the adaptive filter, could enhance fault estimation performance in the scenarios considered. This led to a significant improvement in the safety and reliability of the quadcopter through the FTC architecture, as the system, which previously became unstable in the presence of faults, could maintain stable operation when subjected to uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.