Abstract

A fault-tolerant control method based on algebraic derivative estimation is introduced. It is applied on an electromagnetically supported plate as an example of a nonlinear and an open-loop unstable system. The design of the closed loop control is facilitated assuming that relevant faults are identified sufficiently precisely and fast. This is justified by a novel robust model-based fault identification scheme which relies on algebraic methods for numerical differentiation. Derivative estimation parameters and fault-detection thresholds are chosen systematically based on the properties of the measurements. The experimental results show the practical usefulness of the presented methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call