Abstract

<p style='text-indent:20px;'>This paper is concerned with the issue of fault-tolerant anti-synchro-nization control for chaotic switched neural networks with time delay and reaction-diffusion terms under the drive-response scheme, where the response system is assumed to be disturbed by stochastic noise. Both arbitrary switching signal and average dwell-time limited switching signal are taken into account. With the aid of the Lyapunov-Krasovskii functional approach and combining with the generalized Itô formula, sufficient conditions on the mean-square exponential stability for the anti-synchronization error system are presented. Then, by utilizing some decoupling methods, constructive design strategies on the desired fault-tolerant anti-synchronization controller are proposed. Finally, an example is given to demonstrate the effectiveness of our design strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.