Abstract
The multi-mode tracking control of robot manipulators with unknown dynamics is investigated in this paper. In view of varying loads, robot manipulators are modeled as multi-mode switched systems. Adaptive PID (proportion–integration–differentiation)–like switched controllers are designed via the error transformation and multiple Lyapunov function method, which can make the error system practical stability within prescribed time under a class of switching signals satisfying average dwell time. Furthermore, two cases under the healthy actuator and faulty actuator are discussed. For the case of the partial failure of the actuator, the fault-tolerant adaptive PID-like controller is presented, which consists of two parts. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.