Abstract

If your computer crashes, you can revive it by a reboot, an empirical solution that usually turns out to be effective. The rationale behind this solution is that transient faults, either in hardware or software, can be fixed by refreshing the machine state. Such a “silver bullet", however, could be futile in the future because the faults, especially those existing in the hardware such as Integrated Circuit (IC) chips, cannot be eliminated by refreshing. What we need is a more sophisticated mechanism to steer the system back to the right track. The “magic cure" is the Fault Tolerance On-Chip (FTOC) mechanism, which relies on a suite of built-in design-for-reliability logic, including fault detection, fault diagnosis, and error recovery, working in a self-supportive manner. We have exploited the FTOC to build a holistic solution ranging from on-chip fault detection to error recovery mechanisms to address faults caused by chips progressively aging. Besides fault detection, the FTOC paradigm provides attractive benefits, such as facilitating graceful performance degradation, mitigating the impact of verification blind spots, and improving the chip yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.