Abstract

AbstractLaboratory measurements can determine the potential for geologic materials to generate unstable (seismic) slip, but a direct relation between sliding behavior in the laboratory and physical characteristics observable in the field is lacking, especially for the phyllosilicate-rich gouges that are widely observed in natural faults. We integrated laboratory friction experiments with surface topography microscopy and demonstrated a quantitative correlation between frictional slip behavior and fault surface morphology of centimeter-scale samples. Our results show that striated, smooth fault surfaces were formed in experiments that exhibited stable sliding, whereas potentially unstable sliding was associated with rougher, isotropic fault surfaces. We interpret that frictional stability and fault surface morphology are linked via the evolution of asperity contacts on localized slip surfaces. If fault surface roughness obeys a fractal relationship over a large range of length scales, then we infer that the morphological characteristics observed in the laboratory could indicate the earthquake nucleation potential on natural fault surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call