Abstract

Carbonate-bearing normal faults are important structures for controlling fluid flow and seismogenesis within the brittle upper crust. Numerous studies have tried to characterize fault zone structure and earthquake slip processes along carbonate-bearing faults. However, due to the different scales of investigation, these studies are not often integrated to provide a comprehensive fault image. Here we present a multi-scale investigation of a normal fault exhumed from seismogenic depths. The fault extends for a length of 10 km with a maximum width of about 1.5 km and consists of 5 sub-parallel and interacting segments. The maximum displacement (370–650 m) of each fault segment is partitioned along sub-parallel slipping zones extending for a total width of about 50 m. Each slipping zone is characterized by slipping surfaces exhibiting different slip plane phenomena. Fault rock development is controlled by the protolith lithology. In massive limestone, moving away from the slip surface, we observe a thin layer (<2 cm) of ultracataclasite, cataclasite (2–10 cm) and fault breccia. In marly limestone, the fault rock consists of a cataclasite with hydrofractures and smectite-rich pressure solution seams. At the micro-nanoscale, the slip surface consists of a continuous and thin (<300 μm) layer composed of coarse calcite grains (∼5–20 μm in size) associated with sub-micrometer grains showing fading grain boundaries, voids and/or vesicles, and suggesting thermal decomposition processes. Micrometer-sized calcite crystals show nanoscale polysynthetic twinning affected by the occurrence of subgrain boundaries and polygonalized nanostructures. Investigations at the kilometres-tens of meter scale provide fault images that can be directly compared with high-resolution seismological data and when combined can be used to develop a comprehensive characterization of seismically active fault structures in carbonate lithologies. Micro and nanoscale investigations along the principal slipping zone suggest that different deformation processes, including plastic deformation and thermal decomposition, were active during seismic slip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call