Abstract
AbstractCharacterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi‐timescales, reanalyze previously published short‐term Global Positioning System (GPS) velocities, and evaluate slip‐rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue‐like crustal motion with a progressively northwestward increase in sinistral shear over a distance of ~700 km followed by a decrease over the final ~100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral‐slip fault system on the Shan Plateau is ~12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue‐like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block‐like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear‐driven indentation from north of the Shan Plateau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.