Abstract
Among motor faults, bearing, rotator, and stator failures are the most commonly reported. Because of the low-amplitude fault signatures in the current spectrum, they are also the most challenging to diagnose, even in line-driven motors. However, a fault simulator of induction motors has not been adequately investigated in the literature. The purpose of this paper is to build a hardware-in-the-loop (HIL) simulation system to model system failures of induction drives. The HIL system is based on a dynamical mathematical model, consisting of a dSPACE control system to process data and a real dc motor. The proposed system can produce bearing, rotator, stator, and sensor failures for testing of various fault diagnosis schemes. The experimental results show its functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.