Abstract

Abstract The microstructure and petrophysical properties of fault rocks from siliciclastic hydrocarbon reservoirs of the North Sea are closely related to the effective stress, temperature and sediment composition at the time of deformation, as well as their post-deformation stress and temperature history. Low permeability fault rocks may develop due to a combination of processes including: the deformation induced mixing of heterogeneously distributed fine-grained material (principally clays) with framework grains, pressure solution, cataclasis, clay smear, and cementation. Fault rocks can be classified into various types (disaggregation zones, phyllosilicate-framework fault rocks, cataclasites, clay smears, and cemented faults/fractures) based upon their clay and cement content as well as the amount of cataclasis experienced. In the absence of extensive cementation, the distribution of fault rock types along a fault plane can often be predicted from a detailed knowledge of the reservoir sedimentology. The permeability of fault rocks can vary by over six orders of magnitude, depending on the extent to which the porosity reduction processes have operated. Utilizing the strong link between the petrophysical properties of fault rocks and their geohistory allows the risks associated with fault seal evaluation to be reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call