Abstract

Current grid codes request the wind turbines (WTs) to have a decent level of fault ride through (FRT) capability and also participate in recovering the network stability following contingencies. Modern WTs are mostly equipped with power converters that allow them to control the output power under various operating conditions. However, there are some Fixed Speed Induction Generators (FSIGs) still operating. FSIGs have simple and economic construction. But under fault, they are very susceptible to rotor overspeed that may lead to disconnection from the grid. For variable speed WTs, application of power converters can improve the controllability of the turbines but modifications in their PQ capability are needed to meet the network requirements. This paper is aimed to investigate the impacts of connecting full converter wind generators (FCWGs) to improve FRT capability of FSIGs within a weak network. The implemented reactive power supports set in Danish and Australian Grid Codes will be assessed based on their influences on the FRT capability of FSIGs. Impacts of FCWGs locations as reactive power providers and fault durations on the FRT capability of FSIGs will also be discussed. Results confirm that FRT capability of FSIGs can be improved in accordance with enhanced capability of FCWGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.