Abstract
Device scaling engineering is facing major challenges in producing reliable transistors for future electronic technologies. With shrinking device sizes, the total circuit sensitivity to both permanent and transient faults has increased significantly. Research for fault tolerant processors has primarily focused on the conventional processor architectures. Neural network computing has been employed to solve a wide range of problems. This paper presents a design and implementation of a physical neural network that is resilient to permanent hardware faults. To achieve scalability, it uses tiled neuron clusters where neuron outputs are efficiently forwarded to the target neurons using source based spanning tree routing. To achieve fault resilience in the face of increasing number of permanent hardware failures, the design pro-actively preserves neural network computing performance by selectively replicating performance critical neurons. Furthermore, the paper presents a spanning tree recovery solution that mitigates disruption to distribution of neuron outputs caused by failed neuron clusters. The proposed neuron cluster design is implemented in Verilog. We studied the fault resilience performance of the described design using a RBM neural network trained for classifying handwritten digit images. Results demonstrate that our approach can achieve improved fault resilience performance by replicating only 5% most important neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.