Abstract

In the face of multiple failures caused by extreme disasters, the power and communication sides of the distribution network are interdependent in the fault recovery process. To improve the post-disaster recovery efficiency of the distribution network, this paper proposes a coordinated optimization strategy for distribution network reconfiguration and repair, which integrates the power and communication aspects. First, the recovery process is divided into islanding–reconfiguration and dynamic emergency repair. The coupling relationship between power and communication is considered; that is, power failure may cause communication nodes to lose power, and communication failure may affect the effective operation of remote control devices. Based on this, the fault recovery process is optimized with the objective of maximizing load transfer and direct recovery while introducing a stochastic model predictive control method to handle the uncertainty of distributed power generation by rolling optimization of typical scenarios. Finally, the effectiveness of the proposed strategy is verified using an improved IEEE33-node distribution network system. The simulation results show that the proposed method can recover power to the maximum extent and reduce loss while ensuring the safe and stable operation of the distribution system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.