Abstract

Computer numerically controlled machine tools are the key equipment of the intelligent manufacturing industry, unscheduled shutdowns can substantially cause equipment damage and production loss. Fault propagation analysis, as a prominent basis of reducing unscheduled downtime, can locate the harmful parts and reveal the fault propagation path. To improve reliability, this paper proposes a novel fault propagation analysis method that can accurately and timely evaluate fault propagation coefficients of components in interior computer numerically controlled machine tools. To depict the latent cause–effect relationships of components, a quantitative causal diagram is built with the aid of design information and topology. An inverse PageRank algorithm is proposed to assess the fault propagation risks of components. Unlike the traditional PageRank algorithm, the idea of inverse PageRank is that a node is crucial if it directs to other important nodes. Subsequently, the fault propagation coefficients of components in the quantitative causal diagram are derived and the fault propagation path is identified. The proposed method is validated on the computer numerically controlled machine tool, and the results are basically consistent with the typical cascading events and conform to expert judgment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.