Abstract

In many strike-slip tectonic settings, large rotations (up to 100°) of crustal blocks have been inferred from paleomagnetic data. These blocks are bounded by sets of parallel faults, which accommodate the relative motion between the blocks as regional deformation progresses. Simple geometrical considerations require that the faults must also rotate. In this paper we show that on the basis of mechanical considerations, the amount of fault rotation permissible under a stationary stress field is limited to 20° to 45°. Consequently, block rotations that are larger than 40° or 45° require more than one set of accompanying faults to accommodate the block rotation. Examples of such multiple sets with 40° to 45° between them, as predicted by the model, were recognized in Sistan, Iran; in Yerington, the Lake Mead area, Nevada; and in southern California.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.