Abstract

With the rapid development of distribution networks, two-terminal overhead lines have been used on a large scale for higher power supply reliability, thus the fault location has attracted much attention. Accurate fault location is helpful to shorten the outage time and improve the economy of operation greatly. However, since insufficient standardization of equipment selection and poor management, line parameters are usually inaccurate or even unknown, mature fault location methods based on impedance can’t be applied anymore. Also, the asymmetry caused by non-transposition in distribution networks affects the accuracy of fault location. This paper proposes a fault location method for two-terminal untransposed overhead lines without requiring line parameters. Firstly, this paper considers parameter asymmetry, and the mutual impedances between the three phases are set as different values. Secondly, the location equations rely on three-phase networks, then the self-impedance and mutual impedances are regarded as unknowns and solved directly. Finally, this method takes the average value of fundamental frequency components from different data windows, which reduces error and improves accuracy. The simulation results show that the fault location method has high accuracy, and can effectively overcome the influence of unknown line parameters and non-transposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.