Abstract

Faulty components in a network need to be localized and repaired to sustain the health of the network. In this paper, we propose a novel approach that carefully combines active and passive measurements to localize faults in wireless sensor networks. More specifically, we formulate a problem of optimal sequential testing guided by end-to-end data. This problem determines an optimal testing sequence of network components based on end-to-end data in sensor networks to minimize testing cost. We prove that this problem is NP-hard and propose a greedy algorithm to solve it. Extensive simulation shows that in most settings our algorithm only requires testing a very small set of network components to localize and repair all faults in the network. Our approach is superior to using active and passive measurements in isolation. It also outperforms the state-of-the-art approaches that localize and repair all faults in a network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.