Abstract

The finishing mill is a critical link in the hot rolling process, influencing the final product’s quality, and even economic efficiency. The distribution box of the finishing mill plays a vital role in power transmission and distribution. However, harsh operating conditions can frequently lead to distribution box damage and even failure. To diagnose faults in the distribution box promptly, a fault diagnosis network model is constructed in this paper. This model combines depthwise separable convolution and Bi-LSTM. Depthwise separable convolution and Bi-LSTM can extract both spatial and temporal features from signals. This structure enables comprehensive feature extraction and fully utilizes signal information. To verify the diagnostic capability of the model, five types of data are collected and used: the pitting of tooth flank, flat-headed sleeve tooth crack, gear surface crack, gear tooth surface spalling, and normal conditions. The model achieves an accuracy of 97.46% and incorporates a lightweight design, which enhances computational efficiency. Furthermore, the model maintains approximately 90% accuracy under three noise conditions. Based on these results, the proposed model can effectively diagnose faults in the distribution box, and reduce downtime in engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.