Abstract

VLIW architectures are widely employed in several embedded signal applications mainly because they offer the opportunity to gain high computational performances while maintaining reduced clock rate and power consumption. Recently, VLIW processors became more and more suitable to be employed in various embedded processing systems including safety critical applications such as aerospace, automotive and rail transport. Therefore, techniques to effectively estimate and improve the reliability of VLIW processor are of great interest. Terrestrial safety-critical applications based on newer nano-scale technologies raise increasing concerns about transient errors induced by neutrons. In this paper, we analyze the cross-domain failures affecting redundant mitigation techniques implemented on a statistically scheduled data path VLIW processor and we describe a fault injection analysis of transient faults affecting the r-VEX VLIW processor implemented on an FPGA platform. For a large set of benchmark applications, figures of application performances and errors analysis are provided and commented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.