Abstract

An original approach of fuel cell diagnosis is presented. It is based on the solving of an inverse linear problem linking the magnetic field signature outside of the fuel cell to the current density distribution inside. The searched solution is a linear combination of conservative current distribution obtained by a set of electrokinetic problems solved by a finite face element method. As the problem is ill-posed, the solution is stabilized using a truncated singular value decomposition. The approach is validated to reconstruct a 3-D current density distribution in a stack simulator and in a fuel cell stack operating in the laboratory conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.