Abstract

In order to select fault feature parameters simply and quickly and improve the identification rate of diesel engine faults by using the vibration signals, this paper proposes a diesel engine fault identification method on the basis of the Pearson correlation coefficient diagram (PCC Diagram) and the orthogonal vibration signals. At first, the orthogonal vibration acceleration signals are synchronously acquired in the direction of the top and side of the cylinder head. And the time-domain feature parameters are extracted from the orthogonal vibration acceleration signals to obtain the Pearson correlation coefficient (PCC). Then, the correlation coefficient diagram used to do feature parameter screening is constructed by selecting the feature parameters with the correlation coefficient of more than 0.9. Finally, generalized regression neural network (GRNN) is adopted to classify and identify fuel supply fault in diesel engine. The results show that using the PCC Diagram can simplify the selection process of the feature parameters of the orthogonal vibration signals quickly and effectively. It can also improve the fault identification rate of diesel engine significantly with the help of adding the newly proposed cross-correlation coefficient of the orthogonal vibration signals into the GRNN input feature vector set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.