Abstract
Fault classification and localization are imperative to maintaining an efficient photovoltaic (PV) system. Due to the environmental factors that PV systems function in, they can be prone to multiple types of fault conditions such as string-to-string (SS), string-to-ground (SG), and open-circuit faults (OC). If left undetected, these faults can lead to power loss and eventually system failures. To help mitigate such outcomes, this paper presents an approach to detect, classify, and locate SS, SG, and OC faults using multi-output deep learning (DL) algorithms: convolutional neural networks (CNN), long short-term memory (LSTM), and bi-directional long short-term memory (Bi-LSTM) networks. The proposed approach reduces the number of sensors needed per string by 50% compared to the previous approaches in the literature. It also allows for increased scalability and the development of a multi-label dataset through an uncoupled modeling scheme. Fault classification and location are achieved with accuracies of 99.94% and 99.54%, respectively. Further, a comparison is conducted among the proposed DL and conventional machine learning algorithms using multiple evaluation metrics. The proposed method is validated by testing multiple datasets and adding noise. The results obtained reflect high reliability and demonstrate the effectiveness and scalability of the proposed multi-output DL approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.