Abstract
The centrifugal compressor is widely used in modern industry, and the blades are prone to crack due to complex loads and working conditions. Owing to the fault features caused by initial blade cracks are week and easily interfered by strong noise, it is difficult to recognize accurately by traditional methods. In this study, the SNR estimation and adaptive stochastic resonance (SEASR) method is proposed for fault feature recognition of centrifugal compressor with cracked blade. Based on the relationship between SNR and stochastic resonance (SR) parameters, the subtract noise by empirical mode decomposition (SNEMD) method is established with second-order and fourth-order moment (M2M4), hence solving the problem of adaptive SR. The effectiveness of SEASR is tested and analyzed by simulation signals and experimental data. The results demonstrate that the proposed method can accurately recognize fault features of cracked blades and compound faults, where the output SNR is superior to that of the previous methods. It is a new method to realize fault diagnosis for centrifugal compressor with cracked blade and other rotating machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.