Abstract
The adaptive fault estimation problem is studied for a class of stochastic Markovian jumping systems (MJSs) with time delays and nonlinear parameters. By means of Takagi-Sugeno fuzzy models, the dynamics of observer error generator and the fuzzy error dynamical system are constructed. Based on the selected Lyapunov-Krasovskii functional framework, the adaptive fault estimation algorithm is proposed to enhance the rapidity and accuracy performance of fault estimation. In terms of linear matrix inequalities techniques, a sufficient condition on the existence of the adaptive observer is presented and proved. Moreover, the presented results are also extended to multiple time-delayed nonlinear MJSs. A numerical example is given at last to illustrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.