Abstract
Elevated pore fluid pressures are frequently implicated in governing fault zone seismicity. While substantial evidence from geodetic and geological studies supports this notion, there is a notable scarcity of experimental observations of how fluid pressure influences fault stability during shear. Understanding the precise interplay between porosity, fault slip rate, and frictional stability is pivotal for assessing the significance of processes like dilational strengthening or thermal pressurization in the context of seismic hazards. Here, we prepare fault gouges from the Utah FORGE enhanced geothermal field injection well 16A at depths corresponding to seismic events (between 2050 – 2070m). Experiments were conducted inside a pressure vessel and loaded under a true-triaxial stress state, replicating in-situ stress conditions observed at the Utah FORGE site. The applied fault normal stress and during the experiments were held constant at 44MPa. Pore fluid pressure was varied between successive experiments (13, 20, and 27 MPa) to span a range of effective stresses to examine impacts on fault dilation/compaction and the successive frictional stability. Different fluid pressure boundary conditions: constant volume or pressure were applied to explore how changes in shearing rate influence gouge stability thought the fault drainage state. Our data indicate that the Utah FORGE samples are velocity-neutral and transition to velocity-weakening behavior at elevated pore pressure and shear strains >7. We find dilatancy coefficients e = ∆f/∆ln(v), where f is porosity and v is fault slip velocity, consistent with quartz-feldspathic-rich rocks ranging from 5–12^10-4, indicating a conditionally unstable regime. Furthermore, our results demonstrate that the boundary conditions for pore fluids influence frictional stability viachanges in effective normal stress. For example, when pore volume has zero flux, an expansion in the void volume during slip results in a decrease in pore pressure, transitioning the system towards frictional stability. Our results indicate that the connectivity of pore conduits may be more important than the imposed pore pressure conditions when considering the impact on fault stability. We suggest that the interplay between fault slip and fluid mobility within a fault is a delicate balance for predicting and managing seismic hazards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.