Abstract

We present a method of using fault displacement-distance profiles to distinguish fault-bend, shear fault-bend, and fault-propagation folds, and use these insights to guide balanced and retrodeformable interpretations of these structures. We first describe the displacement profiles associated with different end-member fault-related folding models, then provide examples of structures that are consistent with these model-based predictions. Natural examples are imaged in high-resolution two- and three dimensional seismic reflection data sets from the Niger Delta, Sichuan Basin, Sierras Pampeanas, and Cascadia to record variations in displacement with distance updip along faults (termed displacement-distance profiles). Fault-bend folds exhibit constant displacement along fault segments and changes in displacement associated with bends in faults, shear fault-bend folds demonstrate an increase in displacement through the shearing interval, and fault-propagation folds exhibit decreasing displacement toward the fault tip. More complex structures are then investigated using this method, demonstrating that displacement-distance profiles can be used to provide insight into structures that involve multiple fault-related folding processes or have changed kinematic behavior over time. These interpretations are supported by comparison with the kinematics inferred from the geometry of growth strata overlying these structures. Collectively, these analyses illustrate that the displacement-distance approach can provide valuable insights into the styles of fault-related folding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.