Abstract

A deep learning method for fault diagnosis is proposed in this paper. The stacked sparse auto encoder(SSAE) model with the theory of deep learning extracts deep feature representation from original fault data. Compared with traditional methods, SSAE is more efficient because of its deep architecture. The feature representation is used by a softmax classifier for fault detection and classification. The proposed method is experimented on Tennessee Eastman Process(TEP), a chemical industrial process benchmark, to demonstrate its practicality and effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.